OCR Maths M2

Topic Questions from Papers

Statics

Answers

1	(i)	$60 \mathrm{~T}=15 \times 30 \cos \theta$	M1		moments about A	
		"	A1			
		$60 \mathrm{~T}=15 \times 30 \times 0.6$	A1		$\cos \theta=0.6$	
		$\mathrm{T}=4.5 \mathrm{~N}$	A1	4	AG	
	(ii)	$\mathrm{X}=\mathrm{T} \sin \theta$	M1		res. horiz. (or moments)	
		$\mathrm{X}=3.6 \mathrm{~N}$	A1			
		$\mathrm{Y}+\mathrm{T} \cos \theta=15$	M1		res. vert.(3 terms) (or moments)	
		$\mathrm{Y}=12.3 \mathrm{~N}$	A1			
		$\mathrm{R}=12.8 \mathrm{~N}$	A1V		$\int\left(\right.$ their $\left.\mathrm{X}^{2}+\mathrm{Y}^{2}\right)$	
		73.7° to horizontal	A1J	6	or 16.3° to vert. $\int \tan ^{-1}$ their (Y/X)	10
		or triangle of forces: Triangle (M1) $\mathrm{R}^{2}=15^{2}+4.5^{2}-2 \times 4.5 \times 15 \times 0.6$ (M1A1) $\mathrm{R}=12.8$ (A1) $\sin \theta / 4.5=\sin \alpha / 12.8$ (M1) $\theta=16.3^{\circ}$ to vert. (A1)				

(Q5, June 2005)

2	(i)	$50 \times 9.8 \times 2=\mathrm{Rx} 3.75+80 \times 9.8 \times 0.25$	M1		moments about D.	
		"	A1		SR/no g/R = 21.3 (M1A1A0)	
		$\mathrm{R}=209 \mathrm{~N}$	A1	3		
	(ii)	$130 \bar{x}=50 \times 2+80 \times 4.25$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		moments about BC or FE..... $130 \bar{x}=80 \times 0.25+50 \times 2.5$	
		$\bar{x}=3.385$	A1		$\bar{x}=1.115$	
		$130 \bar{y}=50 \times 0.125+80 \times 0.25$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		moments about EC	
		$\bar{y}=0.202$	A1			
		$\tan \theta=0.615 / 0.202$	M1			
		$\theta=71.8^{\circ}$ to the horizontal	A1	8	71.6° to 72.0°	11

(Q7, June 2005)

$\mathbf{3}$		$\tan \theta=1 / 3 \quad\left(\theta=18.4^{\circ}\right.$ at B$)$	B1		71.6° at C	
		$3 \times \mathrm{T} \sin \theta=20 \times 1.5$ have two distances and no g	must	M1		$\mathrm{M}(\mathrm{A})(\mathrm{d}=3 / \sqrt{ } 10)$
	A1					
		$\mathrm{T}=31.6 \mathrm{~N}$	A1	4		$\mathbf{4}$

(Q1, Jan 2006)

4	(i)	horiz comps in opp direct	B1		at E \& F		
		Right at E + Left at F	B1	2			
	(ii)	$\begin{aligned} & 1.6 \times 9.8 \times 30=20 \mathrm{X} \text { or } \\ & 0.5 \times 30 \mathrm{~g}+0.7 \times 30 \mathrm{~g}+ \\ & 0.2 \times 60 \mathrm{~g}=20 \mathrm{X} \\ & \hline \end{aligned}$	M1		or $10 \mathrm{X}+1.6 \mathrm{gx} 30=30 \mathrm{X} \quad \mathrm{M}(\mathrm{A})$		
			A1		or $10 \mathrm{X}+(\ldots=470.4)=30 \mathrm{X} \quad \mathrm{M}$ mark ok without g but 3 parts		
		$\mathrm{X}=23.5 \mathrm{~N}$	A1	3			

$\mathbf{5}$ (ii)	1.2 T	B 1	
	0.8 F	B 1	
	$0.8 \mathrm{~F}=1.2 \mathrm{~T}$	M 1	
	$\mathrm{~F}=3 \mathrm{~T} / 2$	$\mathrm{~A} 1 \quad \mathbf{4}$	aef
(iii)	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}$	B 1	or $45 \times 0.8 \sin 30^{\circ}$
	$45 \sin 30^{\circ}$ must be involved in res.	B 1	$\mathrm{~T} \times\left(1.2+0.8 \cos 30^{\circ}\right)$
	resolving parallel to the slope	M 1	mom. about point of contact
	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}=45 \sin 30^{\circ}$ aef	A 1	$45.0 .8 \sin 30^{\circ}=\mathrm{T}\left(1.2+0.8 \cos 30^{\circ}\right)$
	$\mathrm{T}=9.51$	A 1	
	$\mathrm{~F}=14.3$	$\mathrm{~A} 1 \quad \mathbf{6}$	
or	$\mathrm{T}+\mathrm{F} \cos 30^{\circ}=\mathrm{Rsin} 30^{\circ}$	B 1	res. horizontally
(iii)	$\mathrm{R} \cos 30^{\circ}+\mathrm{Fsin} 30^{\circ}=45$	B 1	res. vertically
	$\tan 30^{\circ}=\left(\mathrm{T}+\mathrm{F} \cos 30^{\circ}\right) /\left(45-\mathrm{Fsin} 30^{\circ}\right)$	M 1	eliminating R

(Q8, June 2007)

6	direction of R perp. to wall	B 1		
R at 70° to rod	B1	10° to horiz.		
	$0.8 \times 25 \cos 60^{\circ}=1.6 \times \mathrm{R} \sin 70^{\circ}$	M 1	moments about A	
	$0.8 \times 25 \cos 60^{\circ}$	A 1		
$1.6 \times \mathrm{R} \sin 70^{\circ}$	A 1		$\mathbf{6}$	

(Q3, Jan 2008)

7	$\begin{array}{\|l\|} \hline 20 \cos 10^{\circ} \times \mathrm{T} \\ 15 \cos 10^{\circ} \times 9.63 \\ 15 \sin 10^{\circ} \times 4.43 \\ 20 \cos 10^{\circ} \mathrm{T}=15 \cos 10^{\circ} \times 9.63- \\ 15 \sin 10^{\circ} \times 4.43 \quad \text { (needs } 3 \text { parts) } \\ \mathrm{T}=6.64 \mathrm{~N} \end{array}$	B1 B1 B1 M1 A1 5	$\begin{aligned} & =\text { or } \\ & 10.6(\mathrm{~A} \text { to com) } \\ & 34.7^{\circ} \angle \text { comAH } \\ & =15 \times 10.6 \times \cos 34.7^{\circ} \end{aligned}$	16

(Q8, Jan 2008)

$\mathbf{9}$	$\bar{x}=8$	B1	
	T $\sin 30^{\circ} \times 12=8 \times 2 \times 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	$\mathrm{~T}=26.1$	A1 $\mathbf{4}$	

(Q2, Jan 2009)

$\mathbf{1 0}$ (i)	$140 \times \mathrm{X}=40 \times 70$	M1	
	$\mathrm{X}=20 \mathrm{~N}$	A1	
	at $F 20 \mathrm{~N}$ to the right	B1	inspect diagram
	at $G 20 \mathrm{~N}$ to the left	B1 4	SR B1 for correct directions only

(Q3, Jan 2009)

11(i)	$\begin{aligned} & \cos \theta=5 / 13 \text { or } \sin \theta=12 / 13 \text { or } \theta=67.4^{\circ} \\ & 0.5 \times F \sin \theta=70 \times 1.4+50 \times 2.8 \\ & F=516 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1 4	any one of these moments about A (ok without 70) $0.5 \sin \theta=0.4615$ SR 1 for 303 (omission of beam)
(ii)	$F \sin \theta=120+Y$ (resolving vertically) $Y=356$ \boldsymbol{f} their $\mathrm{F} \times 12 / 13-120$ $X=F \cos \theta$ (resolving horizontally) $X=198$ \boldsymbol{f} their $F \times 5 / 13$ Force $=\sqrt{ }\left(356^{2}+198^{2}\right)$ 407 or 408 N	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { A1 } & 6 \end{array}$	M1/A1 for moments (B) $Y \times 2.8+1.4 \times 70=2.3 \times 516 \times 12 / 13$ (C) $0.5 \times Y=0.9 \times 70+2.3 \times 50$ (D) $1.2 X=1.4 \times 70+2.8 \times 50$

(Q3, June 2009)

$\mathbf{1 2}$ (ii)	$\mathrm{s}=0.5$ $\mathrm{~T} \sin 80^{\circ} \times 0.5=0.47 \times 0.5 \times 9.8$ $\mathrm{~T}=4.68 \mathrm{~N}$	B1 M1 A1 Alant height, may be implied A1	
[4]			
			$\mathbf{8}$

13 (i)	$\begin{aligned} & 4 \mathrm{~T} \cos 20^{\circ}=5 \times \mathrm{g} \times 2.5 \\ & \mathrm{~T}=32.6 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	Using moments; allow sin/cos mix Allow with omission of g
(ii)	$\begin{aligned} & \mathrm{X}=\mathrm{T} \sin 20^{\circ} \\ & \mathrm{X}=11.1 \\ & \mathrm{Y}+\mathrm{T} \cos 20^{\circ}=5 \times \mathrm{g} \\ & \text { or } 2.5 \mathrm{Y}=1.5 \times \mathrm{T} \cos 20 \text { or } 4 \mathrm{Y}=1.5 \times 5 \mathrm{~g} \\ & \mathrm{Y}=18.4 \\ & \mathrm{~F}=\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right) \text { or } \tan ^{-1}(\mathrm{Y} / \mathrm{X}) \\ & \text { or } \tan ^{-1}(\mathrm{X} / \mathrm{Y}) \\ & \mathrm{R}=21.5 \mathrm{~N} \\ & \theta=58.8^{\circ} \text { above the horizontal } \end{aligned}$	M1 A1 M1 A1 M1 A1 A1 7	allow sin/cos mix FT their T FT their T, but not from omission of g $\mathrm{X} \neq 0, \mathrm{Y} \neq 0$ or 31.2° to left of vertical 10

(Q4, June 2010)

14	(ii)	(a)	$\begin{aligned} & \mathrm{mg}(0.09 \cos 45)= \\ & 2(0.6+0.6 \cos 45+0.6 \sin 45) \\ & \mathrm{m}=4.65 \mathrm{~kg} \end{aligned}$	M1 A1 A1 A1 [4]	Attempt at moments (must resolve), allow without g $\begin{aligned} & 2\left(0.6+\sqrt{ }\left[0.6^{2}+0.6^{2}\right]\right) \\ & (4.6451 \ldots) \end{aligned}$
	(ii)	(b)	$\begin{aligned} & 2 / 4.6451 \mathrm{~g} \\ & \mu \geq 0.0439 \end{aligned}$	M1 A1 A1 [3]	Ratio force/weight $\mathrm{cv}(4.65)$ Correct inequality sign, accept 0.044

(Q5, Jan 2011)

15 i	$\begin{aligned} & F \times 0.8= \\ & 0.6 \cos 60 \times 550 \\ & F=206.25 \end{aligned}$	M1 A1 A1 A1 [4]	Attempt at moments Accept 206, cao
ii	$\begin{aligned} & \mathrm{T} \times 2 \times 0.8 / \tan 30 \\ & = \\ & 550 \times(0.8 / \sin 30-0.6 \cos 60) \\ & \mathrm{T}=258 \\ & \\ & \mathrm{R}=550-\mathrm{T} \cos 30 \\ & \mathrm{Fr}=\mathrm{T} \sin 30 \\ & \mu=129 / 326.6 \\ & \mu=0.395 \end{aligned}$	M1* A1 M1* A1 A1 M1* A1 B1* M1dep* A1 [10]	Moment of T about P T x 2.77 Moment of weight about P $550 \times(1.6-0.3)$ Accept to 2sf Resolving vertically, 3 terms needed Value for T not required Value for T not required; accept < or \leq For correct use of $F=\mu R, R \neq 550$
OR	$\begin{aligned} & T \times 0.8 / \tan 30+550 \times 0.6 \cos 60=R \times 0.8 / \cos 60 \\ & R=550-T \cos 30 \\ & \text { Solve for } T \text { or } R \\ & T=258 \text { or } R=326.5625 \\ & F r=T \sin 30 \\ & \mu=129 / 326.6 \\ & \mu=0.395 \end{aligned}$	M1* A2 M1* A1 M1 A1 B1* M1dep* A1 $[10]$	Moments about V , 3 terms needed A1 for two terms correct Resolving vertically, 3 terms needed Accept to 2sf Value for T not required; accept < or \leq For correct use of $F=\mu R, R \neq 550$
OR	$\begin{aligned} & \text { Fr } \times 1.6 \cos 30+550 \times(1.6 \sin 30+0.6 \sin 30)= \\ & \\ & R \times(1.6+1.6 \sin 30) \\ & R=550-T \cos 30 \\ & \mathrm{Fr}=\mathrm{T} \sin 30 \\ & \text { Solving for at least one of } \mathrm{R}, \mathrm{Fr} \text {, or } \mathrm{T} \\ & \text { Either } \mathrm{R}=326.5625 \text {, or } \mathrm{Fr}=129(.0017008) \text {, or } \mathrm{T}=258 \\ & \mu=129 / 326.6 \\ & \mu=0.395 \end{aligned}$	M1* A2 M1* A1 B1* M1 A1 M1dep* A1 [10]	Moments about $\mathrm{Q}, 3$ terms needed A1 for two terms correct Resolving vertically, 3 terms needed accept $<$ or \leq Only one needed. Accept to 2sf. For correct use of $F=\mu R, R \neq 550$

16	(i)	$\begin{aligned} & P \times 1.6=10 g \cos 60 \times 1.2 \\ & P=36.75 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Moments about A Allow 36.8
	(ii)	$\begin{aligned} & R+36.75 \sin 30=10 g \\ & F=36.75 \cos 30 \\ & \mu=31.8 / 79.6 \\ & \mu=0.4(00) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { B1 FT } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	Attempt at resolving vertically or taking moments. May be implied. $R=79.6(25)$ Expect 31.8. Or second correct equation involving F or R or both. For use of $($ their $) F=\mu($ their $) R \quad R$ not $=10 g$ or their P from (\mathbf{i}). AWRT www. Allow inequality

(Q3, Jan 2012)

17	(i)	$\begin{aligned} & T \cos 30 \times 1.5 \sin 30=15 g \times 2 \\ & T=453 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Attempt at moments about A, g can be omitted at this stage
	(ii)	$\begin{aligned} & X=T_{c} \sin 30(=226) \\ & Y+T_{c} \cos 30=15 g \\ & R=\sqrt{ }\left(226^{2}+245^{2}\right) \text { or } \tan \theta=245 / 226 \\ & R=334 \\ & \theta=47.3 \text { below horizontal (to the left) } \end{aligned}$	$\begin{gathered} \text { B1ft } \\ \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	Using their value T or taking moments about P Attempt to resolve vertically or taking appropriate moments Using their value T; expect $Y=-245$ or better Either or both of these equations can be replaced with moments about an appropriate point eg P, Q, B, c of m of beam. Any relevant angle Allow 333 Allow 47.2, 42.7 to the downward vertical SC: If 392 in (i) leading to $Y= \pm 245$ only in (ii) max M1A1

(Q3, June 2012)

18	(ii)	$\frac{a^{2}+15 a+75}{3(a+10)}=5$ Solving for a $a=8.66 \text { or } 5 \sqrt{ } 3$	$\begin{gathered} * \mathrm{M} 1 \\ \\ \text { dep*M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Substitute x_{G} as 5 $a \leq 8.66$
	(iii)	$\begin{aligned} & (25+2.5 a) y_{\mathrm{G}}=25 \times 2.5+2.5 a \times(2 / 3 \times 5) \\ & \begin{array}{l} y_{\mathrm{G}}=\frac{10 a+75}{3(a+10)} \text { or } 2.89 \\ \tan \theta=x_{\mathrm{G}} / y_{\mathrm{G}} \\ \quad=5 / y_{\mathrm{G}} \\ \theta=60 \end{array} \end{aligned}$	*M1 A1ft A1ft dep*M1 A1ft A1 $[6]$	Method to find centre of mass from $A B$ (or $C D$) with or without a substituted. ft their a from (ii), from $\mathrm{CD} y_{\mathrm{G}}=2.11$ Using trig to find an appropriate angle, eg complement of θ. ft their a from (ii), but not an incorrect y_{G} $\theta \leq 60$ (anything that rounds to 60)

(Q7, June 2012)

19	(i)	$\begin{aligned} & \text { Use of moments } \\ & 2.5 \mathrm{R}=3 \mathrm{gcos} 60 \times 2 \\ & \mathrm{R}=11.76 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Trig with 3 g , no trig with R unless using 2 components. Allow 11.8	
	(ii)	$\begin{aligned} & \mathrm{R}^{\prime}+\mathrm{R} \cos 60=3 \mathrm{~g} \\ & \mathrm{~F}=\mathrm{R} \cos 30 \\ & \mathrm{Use} \mathrm{~F}=\mu \mathrm{R}, \\ & \mu=0.433 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft } \\ & \text { B1ft } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	Resolve vertically, 3 terms, comp (R). Using $\mathrm{cv}(\mathrm{R})$ Using $\operatorname{cv}(\mathrm{R})$ Not R' $=3 \mathrm{~g}$ for method Allow 0.435 from use of $\mathrm{R}=11.8$	

20	(i)	$\begin{aligned} & x_{\mathrm{G}}=(2 \times 2) / \pi \\ & P(\text { or } X) \times 4=0.3 g \times x_{\mathrm{G}} \\ & Y=0.3 g \\ & \text { Use } R^{2}=X^{2}+Y^{2} \text { to find } R \\ & R=3.09 \mathrm{~N} \end{aligned}$	B1 *M1 A1ft B1 dep*M1 A1 $[6]$	$x_{\mathrm{G}}=1.2732 \ldots$. May be seen in (ii), mark only once. Take moments about A or B $P=0.9358 \ldots . . \mathrm{ft}$ their x_{G} for this mark.
	(ii)	$\begin{aligned} & P \times 4= \\ & 0.3 g \times\left(2 \sin 30+x_{\mathrm{G}} \sin 60\right) \\ & P=1.55 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Attempt at moments, force \times distance $=0.3 g \times$ distance $\begin{aligned} & 0.3 g \times 2.1026 \ldots \ldots \\ & 1.545453 \ldots \ldots . \end{aligned}$

(Q3, June 2013)

21	(i)	$\begin{aligned} 4.4 x_{\mathrm{G}} & =4 \times 1 / 4 \times 8 \\ & -0.4 \times 1 / 3 \times 10 \\ x_{\mathrm{G}}= & 1.52 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Table of moments idea. Moments about other axes acceptable Allow ${ }^{50} / 33$
	(ii)	$\begin{aligned} & T_{\text {shell }} \times 18=4.4 g \times(8-1.52) \text { or } T_{\text {cone }} \times 18=4.4 g \times(10+1.52) \\ & T_{\text {shell }}+T_{\text {cone }}=4.4 g \\ & T_{\text {shell }}=15.5 \text { and } T_{\text {cone }}=27.6 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Or any other correct moment equation. ft on x_{G} from (i) May use a second moments equation For both

(Q4, June 2013)

